THE RIFE MICROSCOPE: OVERCOMING THE FRAUNHOFER
DIFFRACTION LIMIT
APPENDIX A
This is a REVISED and CORRECTED version of the
Appendix A, which was released 1 / 6 / 93. Do to a false assumption and a
misapplication of an approximation calculation, on my part, the previous
Appendix A was terminally flawed. Sorry about that, but life goes on, so here
is the REVISED and CORRECTED Appendix A; enjoy.
By Gary Wade (
I have
been searching for any schematics for the construction of any of the five
microscopes Dr. Royal R. Rife built. The workings of Rife's Universal
microscope are described in the article "The New Microscopes" by R.
E. Seidel, M.D. and M. Elizabeth Winter, which appeared in the Feb. 1944 issue
of Journal Of The Franklin Institute. This same article appeared in the 1944
Annual Report of the Directors of the Smithsonian Institution in
To
understand how the magnification and resolving power of the Rife microscope can
go beyond that of the commonly used optical microscope, it is necessary to
understand the cause of the magnification and resolving power limitations of
the ordinary optical microscope. Figure 1 shows the
simplest form of a microscope. The object (1) for the objective lens has its
image (2) as the object for the eyepiece lens. This object (2) has a final real
image formed on the eye retina (4) by the combined lens system of the eyepiece
lens and eye lens. And finally, the brain interprets the real image (4) as
coming from a virtual object (3). From the point of view of geometrical optics
alone, the objective and eyepiece of Figure 1 can each be replaced with lens
combinations to give unlimited magnification. However, due to diffraction
phenomenon, namely Fraunhofer diffraction, and lens aberration phenomenon there
is a practical limit to useful magnification. From theory and experimentation
it has been found that Fraunhofer diffraction phenomenon is usually by far the
dominant limiting factor in determining the resolution ability of a lens system
to form an image. Figure 2 shows a
So looking
back at Figure 2 we see that
if the distance s between the two point (zero diameter ) light sources o and o'
becomes small enough, their images I and I' will begin to overlap. This means
that any two self luminous point light sources o and o' located on an object of
interest ( the specimen ) cannot be observed independently unless they are far
enough apart so that the center bright zone of their Fraunhofer diffraction
patterns do not appreciably overlap. In optics the standard relationship
between s, w, n, and i for the lens of Figure 2 is:
s = ( 1.22
w )/ 2n sin i ; Equation 1.
s is the
minimum separation between o and o' where they are just resolved, w is the
wavelength of light used, n is the index of refraction of the medium between o
( or o' ) and the lens surface, and i is the angle as indicated in Figure 2.
Substituting appropriate values of w, n, and i into Equation 1, for commonly
used high power optical microscopes, gives values for s of around 2,000
Angstroms or .2 microns, which is larger than the mean radius of viruses.
However, this .2 micron resolution limit is still too optimistic when other
distortion effects of lens systems are taken into account. The minimum
resolving distance given by Equation 1 does not explicitly contain the diameter
( D ) of the lens. However, direct examination of Figure 2 clearly shows how i
is dependent on D. It is now evident that no matter how much the eyepiece lens
magnifies the object ( 2 ) of Figure 1, the corresponding size resolution in
the final virtual image ( 3 ) can be no better than .2 microns.
Rife found
a way to overcome the Fraunhofer diffraction limitation, that enabled him to
build a microscope that could see viruses. What Rife did was to apply the
Principle of Reversibility in a new and novel way. The Principle of
Reversibility states: If a reflected or refracted ray is reversed in direction,
it will retrace its original path. This principle has more than a purely
geometrical foundation, and can be shown to follow from the application of a
corresponding mechanics principle to wave motion. In other words diffraction
phenomenon ( wave phenomenon ) is also undone by reversing the path of the
light ray. In Figure 4 we see a
equiconvex lens which has formed the image I from a point light source object
o. As indicated, the image I is not a point but has the form of concentric
light and dark zones just as in Figure 3. Now by the
principle of reversibility, if the diffraction pattern image I of Figure 4 is sent back
through the equiconvex lens, the original point image o will be formed, not the
normally found diffraction pattern image from a point light source. Note that
the image of Figure 4 is formed in space not on a screen. The diffraction
pattern image that is being sent back through the lens is effectively a time
reversal of light "image". It is not light back scattered from an
image formed on a material screen. Now consider Figure 5 which shows a
compound lens objective as used in high power optical microscopes being used to
form an image I of a point light source o. As with the single lens objective a
point image will not be formed. Instead a Fraunhofer diffraction pattern will
be formed as shown. For simplicity the Fraunhofer diffraction pattern shown is
that of a single lens, however the actual pattern would be a composite of the
separate Fraunhofer diffraction patterns from the three lenses in the system.
The actual pattern would qualitatively be the same as shown ( a strong central
light disk, known as the Airy's disk, surrounded by faint darker and lighter
concentric zones ). And just as before, if the diffraction pattern ( image )
were sent back through the objective lens system a light point image would be
formed, not a diffraction pattern image. What Rife apparently realized was that
he could essentially eliminate Fraunhofer diffraction phenomenon and achieve
high magnification by using a eyepiece that was exactly like the objective
used, but installing it in the opposite orientation ( backwards ) to the
objective, while concurrently inserting an optically symmetric light beam
expanding optical assembly between the eyepiece and objective ( (see Figure 6A ). Figures 6B and 6C
illustrate qualitatively the light ray paths occurring at the spherically
concave surfaces of the beam expanding optically symmetric assembly shown in
Figure 6A. Figure 6D illustrates how overly divergent light rays are dumped by
the beam expanding optically symmetric assembly, when they make too small an angle
with three normal to the prism wall. Figure 6E shows a
detailed ray tracing diagram for a two stage version of the four stage
optically symmetric light beam expanding optical assembly shown in Figure 6A.
Each pair of opposing spherically concave surfaces is considered a single
stage. This figure illustrates how the beam of light from the objective is
expanded in such a way that only light rays that are very close to the optical
axis of the entering converging beam reach the eyepiece entrance. Note that
just before the converging beam from the objective lens system comes to its
focal point to form an image, it encounters the interface between the prism
material medium and the air at the spherically concave prism surface. This
converging beam is centered on the optical axis of the spherically concave
prism surface. Upon crossing the spherically concave interface the converging
beam is converted into a diverging (expanding) beam about its center axis. As
this now diverging beam passes through each additional spherically concave
surface the central portion of the beam is again expanded about its axial
center. It is this greatly expanded ( "magnified" ) portion of the
original beam which is focused down into an image by the eyepiece. Since each
spherically concave prism surface is paired with an identical spherically
concave prism surface oriented in the opposite direction, essentially all
Fraunhofer diffraction phenomena introduced by one concave prism surface is
undone by the adjacent one when considering the effect only on light rays (
waves ) very close to the optical axis. Of coarse the optical axis of adjacent
concave prism surfaces must coincide as closely as possible with each other.
The expanded light beam leaving the planar surface of the last prism and
entering the eyepiece lens system has the same divergence ( time reversed
convergence ) angle as the light beam leaving the objective lens system , if
the spacing between the prism face and the first lens surface of the eyepiece
is chosen correctly. When the expanded portion of the original beam is focused
down into an image it still contains the Fraunhofer diffraction pattern
obtained from its passage through the objective lens system. However, the
eyepiece, which is identical ( matched ) to the objective lens system, but used
in the opposite orientation, produces a Fraunhofer diffraction pattern which
undoes essentially all of the original Fraunhofer diffraction pattern
introduced by the objective lens system.
Figure 7 is a
schematic diagram of a generic form of the Rife microscope such as the ones
actually constructed by Rife. We will now discuss the optics of this microscope
and then follow up with a modern version which can now be built. The light
condenser section of the microscope consists of elements ( 1 ) through ( 4 ).
These concentrate the light from the mercury arc lamp ( 2 ) into an intense
converging beam of light which is directed onto lens ( 5 ). Lens ( 5 ) turns
the intense converging light beam into a thin pencil shaped parallel beam which
is directed to the center of the Risley prism ( 6 ). The Risley prism, which
consists of two counter-rotating circular thin prism wedges, separates the
intense pencil of light into a fan shaped spectrum. Once the angle of incidence
of the pencil of light to the plane of the Risley prism is held fixed, the
angular width and orientation of the spectrum is then determined by the relative
angle of rotation between the two prisms ( the effective vertex angle of the
Risley prism ). A small portion of wavelengths of this spectrum falls across
the variable diameter circular opening of the diaphragm ( 7 ). The setting of
the Risley prism determines the exact wavelength of the light that goes through
the center line of the diaphragm and the diameter of the diaphragm aperture
determines the spread in wavelength values that goes through the diaphragm with
the central chosen wave length. Lens ( 8 ) focuses the chosen wavelength and
its associated spread in wave lengths down into an intense spot of light just
under the specimen located on the quartz slide on microscope stage ( 9 ). ( A
dark field set up could just as well have been used. ) The microscope objective
( 10 ) acts as a normal microscope objective. However, note that in the
original Rife microscopes the various lens making up the objective lens are not
color corrected. This will be discussed further on in the text. The refracted
light leaving objective ( 10 ) has a very small angle of convergence (
approximately one degree or less ). When this refracted light enters the prism
system ( 11 ) its angle of convergence is made significantly smaller do to the
change in the index of refraction at planar prism face. This allows the
converging beam to travel the first prism's interior without significant actual
convergence. As the beam of light from the objective transits the prism system
it is expanded in diameter about the principal center ray. The diverging and
expanded light beam exiting from the planar face of the last prism then enters
the matched eyepiece ( 12 ) where essentially all Fraunhofer diffraction
phenomenon from the objective lens system is undone and a final image is
formed.
So far we
have discussed only diffraction phenomenon as the major limiting factor in the
resolving power and therefore the determining factor in the useful
magnification of an object. There is another problem of chromatic aberration ( see Figure 8 ) which
Rife had to overcome to achieve the required spatial resolution to see viruses.
Figures 8A, B, and C illustrate the problem normal lens have in
standard high powered optical microscopes when it comes to forming a sharp
image of a multicolored object. Figure 8A illustrates how the index of
refraction changes with color ( wave length ) and therefore the focal point
changes with color. The practical consequences of this changing index of
refraction with color is illustrated in Figure 8C. The same object, if viewed
in different colors, would have different image locations and magnification.
Figure 8B shows a cemented doublet made up of a positive equiconvex lens made
of crown glass and a negative concave-plano lens made of flint glass. The power
of the equiconvex lens is larger in magnitude than the magnitude of the
negative power of the concave-plano lens and therefore the combination has a
overall positive power. The possibility of color correction by this combination
comes from the fact that dispersions produced by different kinds of glass are
not proportional in the deviations they produce. Figure 9A, B, and C shows
three different standard type microscope objectives which use the above
discussed color correction. However, Rife chose not to use this color
correction technique in the objective / eyepiece lens systems of his
microscopes ( see Figure 7 ). Instead he only used pure fused quartz lenses in
his objective / eyepiece lens systems ( shown in Figures 9D, and 9E ).
He was able to get away with non - corrected lenses because when he found the
solution to another common problem in microbiology observations with a
microscope, he found he did not need color correction in general.
That other
common problem is one of making the specimen ( bacteria or viruses ) clearly
visible. Normally dyes / stains are used to stain bacteria ( now dead bacteria
after the staining process ) to make them clearly visible and identifiable.
When it comes to viruses this technique is generally unusable, because of dye
pigment size of some stains and other considerations. Rife found that
invariably when he looked at any bacterium or virus with his microscope he
could always find at least one narrow band of wavelengths of light that made
the bacterium or virus luminesce and or fluoresce. Furthermore, the luminescent
and or fluorescent color ( narrow band of wave lengths ) of the bacterium or
virus was unique, just as the wave length that made it fluoresce. In other
words, Rife had found a way for the specimen to self illuminate with a light
emission of one color. Therefore no color correction was required. There were,
however, some exceptions where the microbe would luminesce and or fluoresce
with two different colors, but one would generally be much brighter than the
other. When focusing the image using the brighter wave length emission a dim
halo around the object's image would be seen from the now out of focus dim
luminescent and or fluorescence emission wave length. Two other potential
apparent reasons Rife did not use color corrected objective lenses in his
microscope
are their extra light loss at dissimilar material interfaces, and his desire to
"see" both visually and photographically farther up toward and into
the ultra violet light spectrum range, which a pure quartz lens system allowed.
Figure 10 is what a
modernized version of a Rife microscope could look like. This microscope could
be built by any present day university at a cost much less then the cost of an
electron microscope. The advantages of the Rife microscope over the electron
microscope are:
7) While
directly observing the disease pathogen with a Rife microscope, the resonance
ultra sound frequencies which destroy this particular pathogen can be
determined ( see Appendices B, C, and D for a detailed description of this
process ).
What the
actual limits of resolution and therefore effective useful magnification will
be for the modern Rife type microscope is not known. However, there is every
reason to believe that it can easily surpass that of the best currently
available electron microscopes.
Taken
from: DR. RIFE AND THE DEATH OF THE CANCER INDUSTRY, a paper by physicist Gary
Wade 1 / 6 / 93. P.S. - Since the writing of this appendix, I have found three
other ways to build a Rife type microscope which still use the same principles
put forth in this Appendix A (
CLICK FOR THE NEW GARY WADE RIFE MICROSCOPE ARTICLE
IF YOU FOUND THIS ARTICLE OF REAL VALUE, PLEASE MAKE A HARD COPY WHILE STILL AVAILABLE.