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APPENDIX D

THE PHYSICAL STRUCTURE OF VIRUSES AND BACTERIA, WHICH MAKE
THEM EX.REMELY SUSCEF TIBLE TO DESTRUCTION BY SPECIFIC
STRUCTURAL RESONANT MECHANICAL VIBRATIONS

In Appendix A it was shown how Dr. Royal Raymond Rife was able in 1920 to build
the first of five optical microscopes, which were able to overcome the normally found
Fraunhofer diffraction limitations to size resolution occurring in today's commonly used
optical microscopes. Rife's microscopes were able to see viruses. In Appendix B it was
shown how Rife , while observing with his microscope, used his frequency instrument to
destroy viruses and bacteria. It was also alluded to it being some sort of resonant
vibrations set up in the microbe structure by the frequency instrument that destroyed the
microbe. In Appendix C an example of a simple virus capsid ( protein coat ) was used to
show how structural resonance vibrations can destroy a virus. In this Appendix D a
detailed look at the physical structure of virus capsids will show that they have
construction which is particularly susceptible to destruction by structural resonant
vibrations. Also a look at bacteria cell membrane and bacteria cell wall structure will
suggest how and why bacteria are also susceptible to destruction by exposure to structural
resonant vibrations.

The study of virus types and structure is a very complex endeavor. In this Appendix
we will only consider simple virus capsid structures in detail. However, these simple
virus capsid structures will have structure patterns which are common to all viruses and
will illustrate why all viruses are susceptible to destruction by structural resonant
vibrations. Almost all viruses of interest can be classified under two headings: 1)
Viruses with helical symmetry, and 2) Viruses with icosahedral symruetry.

Two viruses with helical symmetry are illustrated in Figures 1 and 2 and will serve
as prototypes of the viruses of helical symmetry. Figure 1 illustrates a segment of the
well known tobacco mosaic virus. In this virus, identical protein molecules associate
with the virus RNA genome to form a right handed helix pattern as shown. This
assembled virus is also called a naked helical nucleocapsid. Naked because there is no
lipid bilayer coat around the helical nucleocapsid. When ever the genome of a virus is
enclosed by a protein coat it is called a nucleocapsid. Figure 2 illustrates a helical
nucleocapsid strand which has been wound into a still much larger helix, which is
encapsulated in a lipid bilayer envelop membrane, which has glycoprotein spikes on its
outer surface. The tobacco mosaic virus structure is typical of many viruses that cause
plant diseases. The virus structure illustrated in Figure 2 is typical of many viruses that
cause animal/human diseases. For example, influenza and measles viruses. We will see
later on in this appendix that viruses with helical symmetry can be treated as torsional
oscillators and by over driving these torsional oscillators at their resonant frequency they
can be destroyed. However, first we will study the protein coat (capsid ) structure of the
by far most common and numerous types of viruses to cause diseases in plants and
animals. Namely, viruses with icosahedral symmetry.

Hustrated in Figure 3A,B, and C are three different views of a icosahedron. The
icosahedron has 20 equilateral triangle faces, 12 vertices, and 30 edges. The opposing
vertices lay on an axis of five fold symmetry as illustrated in F igure 3A. In other words
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each time the icosahedron is rotated ( 720 = 3600 /5 ) about one of these six axes it is
brought back into the same state. The axes through the centers of opposing equilateral
triangles have 3-fold symmetry as illustrated in Figure 3B. In other words each time the
icosahedron is rotated ( 1200 = 3600 /3 ) about one of these 10 axes it is brought back
into the same state. The 15 axes through the centers of opposing edges are axes of 2-fold
symmetry, as illustrated in Figure 3C. In other words each time the icosahedron is
rotated ( 1800 = 3600 /2 ) about one of these 15 axes it is brought back into the same
state. Figure 4A and B illustrate how a section of an isometric net can be folded into an
icosahedron. Such an isometric net for constructing icosahedrons is illustrated in Figure
5. Figure 5A shows the isometric net section of Figure 4A. Now it is an amazing fact
that most viruses have capsids surrounding the viral genome, which have icosahedral
symmetry. It is this fact of icosahedral symmetry of the capsid that allows us to associate
a repeating protein pattern with the specific isometric net illustrated in Figure 5, from
which a virus capsid can be constructed by the method illustrated in Figure 4A. The
circles in Figures 5B,C,D,E, and F represent protein molecules. You can imagine
isometric nets in which each of the protein molecule patterns of Figures 5B,C,D,E, and F
each fill the entire isometric net. Then by removing an isometric net segment as
illustrated in Figure SA from each of these isometric nets, five different virus capsids can
be constructed. It should be noted that even though I have shown identical circles
implying identical protein molecules in each of the isometric nets, in fact most viruses use
two or more different protein molecules in their capsid. So just think of the circles as
place holders for different protein molecules.

Do to the high symmetry of the specific isometric net of Figure 5, which produces
icosahedral symmetry, it is possible to chose isometric net sections, which have the same
shape and symmetry as the isometric net section of Figure SA, but consists of integer
multiples of the 20 unit triangles of Figure SA. These larger isometric net sections can of
course also be folded into an icosahedral shape, but are properly called deltahedra. Some
of these possible deltahedrals are illustrated in Figure 6. Figure 7 illustrates some of the
possible equilateral triangular deltahedral faces, some of which were illustrated in Figure
6. For a simple concrete example consider Figure 8. In Figure 8 we have constructed an
isometric net as was suggested in Figure 5C. In Figure 8, three equilateral triangular (
protein ) faces are illustrated, namely triangles ABE, ACF, and ADG. These triangle

faces are illustrated in virus capsid models you are going to construct, from Figures
9A,9B, and 9C respectfully. These are all simple examples of deltahedrals illustrated in
Figure 6A. Now looking back at Figures 3D,E, and F we see spherical or inflated
versions of Figures 3A,B, and C respectively. The inflated versions have the exact same
5,3,2 rotational symmetry as the icosahedra and can be constructed from the same
stretched or deformed isometric net as the icosahedra was. The importance of this is that
viruses with icosahedral symmetry are generally spherical in living tissue due to
hydrophilic interaction between virus coat proteins and or lipid bilayer with tissue water
and osmotic pressure.

Figures 9A,B,C,D,E F,G, and H are all simople virus capsids for you to construct. The
importance in constructing these capsid models is, that until you construct them, you are
not likely to clearly see just how highly symmetric , over lapping, and closed on its self
these periodic protein clump patterns on virus capsids are. The importance of this high
symmetry, over lapping, and closed on its self periodicity is that it makes each virus type
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FIGURE 7
ILLUSTRATING ISOLATERAL FACES OF
DELTAHEDRA ON AN ISOMETRIC NET
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exceedingly easy to destroy with its own specific frequencies of mechanical structural
resonance vibrations. _ '
Here are the instructions for assembly of the virus coat in Figures 9A,B,C,D,EF,G,
and H. First go to a copy machine and enlarge the figure 122% two times. This will give
almost a page full of virus coat. Second, make another copy of the last enlargement onto
thick cardboard copy paper. You may have to look around to find the right copy machine
for this. Third, cut out all dashed lines on the cardboard copy. You should now have
something that looks like Figure 4A except for extra tabs for gluing the model together.
(1 have found that Elmer's Glue All works well ). Fourth , taking a straight edge ruler
and lining its edge up congruent with all of the equilateral triangle facet edges as those
shown in Figure 4A, fold the cardboard over the ruler edge until a 90 degree fold angle
is achieved, while folding away from the faces shown in Figures 9A through 9H. Be
sure to fold all of the glue tabs this way also. Fifth, begin gluing adjacent tabs flush
together. It may prove helpful to use scotch tape to tape the adjacent faces together after
gluing while waiting for the glue to set. Also strong alligator clips are useful in holding
the glued tabs together while the glue sets up. Have fun and may the glue be with you.
Once you have several virus capsid models constructed, you will observe numerous
closed rings of protein molecules ( clumps ) as illustrated in Figure 10 or as directly
visible in the plant virus capsids illustrated in Figure 11. These closed periodically
spaced protein clump rings form a pathway for mechanical wave motion. In fact they are
a biological manifestation of the classical physics problem of wave motion on a
periodically spaced mass beads on an elastic string with circular boundary conditions.
The solutions to the problem are the well known quantatized standing wave solutions.
For each quantatized wavelength solution there are two transverse oscillation modes for
the system ( closed ring ) and one longitudinal oscillation mode. There is a total number
of independent oscillation modes equal to three times the number of masses in the closed
ring. Looking at Figure 10, one transverse mode would be protein molecules (clumps)
being alternately displaced above and below the plane of the page. The other transverse
oscillation mode for the same particular wavelength solution would be at right angles to
this other mode. It would consist of the alternate displacement of the same protein
clumps toward and away from the center of the closed ring of protein clumps. The
longitudinal mode consists of protein clumps being displaced back and forth about their
equilibrium position along the arc length of the ring. All three modes are allowed to exist
simultaneously. Figure 12A shows a mathematical abstraction of a closed ring of ten
- protein molecules ( clumps ). Figure 12B shows the same ring linearized and extended in
length for graphical purposes to easily illustrate standing wave motion. Figures 12C,D,
and E, show the transverse and or longitudinal displacement patterns associated with
some of the standing wave solutions for the ring. Similar displacement patterns can be
drawn for other closed rings with various numbers of protein clumps per ring. For
example Figure 12 F and G illustrate the standing wave pattern for a ring consisting of
five protein molecules. What is crucial to note is that some standing wave displacement
patterns put far more stress on the ring than others. The most stressful standing wave
displacement pattern is one where adjacent protein molecules ( clumps ) oscillate 180
degrees out of phase as illustrated in Figure 12C. This mode places maximum stress on
the relatively weak adjoining bonds between these protein clumps. If the displacement
amplitude becomes to large the bonds will rupture and the ring will disintegrate. Now
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examining the various capsid models you have constructed, you will note these ring
patterns are commonly overlapping and or tangentially bonded to each other. For
example the capsid constructed from Figure 9C has how many: 1) Rings with five
member protein clumps, 2) Rings with six member protein clumps, 3) Kings with ten
member protein clumps, and 4) Rings with fifteen member protein clumps? How many
of the five member rings overlap with each other? How many of the five member rings
are tangential to each other? With how many other six member rings does each six
member ring overlap or intersect? With how many other ten member rings does each ten
member ring overlap or intersect? With how many other fifteen member rings does each
fifteen member ring overlap or intersect? Now how do all of the rings overlap or
intersect with each other? By now you should have had a cathartic experience realizing
just how cross coupled even a very simple virus capsid is when considered as a reservoir
for standing wave energy. Now realize that at each overlap or intersection region for
each protein molecule in the rings discussed above, the bond strength is relatively very
weak and that combined random mixing of standing wave displacement amplitudes from
even ultra low intensity ( ~1 0-16 w/m?) standing waves on the various rings can
rupture these bonding regions. When Rife exposed viruses to their most stressful
mechanical oscillation mode, he could literally while viewing them through his
microscope, see them disintegrate and or even explode. And as was shown in Appendix
B, Rife was only using ultrasound intensity levels of around 10-16 w/m?2 .

So far we have avoided the use of mathematics and differential equations to illustrate
standing wave motion on the virus protein coat ( capsid ). However, to fully appreciate
how and why a virus is so susceptible to its own mechanical structural resonant vibration
frequency it is necessary to apply some simple physics to the problem. All the physics
that will be used is readily available in undergraduate physics mechanics text books, so I
will simply state the results here. Figure 13A illustrates a ten member protein clump ring
such as we have found in virus capsids. Figure 13B is the mathematical abstraction of
Figure 13A. Figure 13C focuses in on the oscillation of a single protein clump of the ring
while it is executing a single mode oscillation of the most stressful oscillation mode to
bonds in the ring. ( The results we will obtain are however valid for all oscillation
modes. ) The differential equation of motion for free oscillation of the system shown in

Figure 13C is equation 1.
d2s/d2 + (b/m)dS/dt + Wy2S = 0, Equation 1

where S is displacement of the center of mass from its equilibrium position, m is the mass
of the protein molecule, b is a positive drag factor constant, and W, is the natural
resonance angular frequency of the system. If the mass m of the system is displaced a
distance So from its equilibrium position and then released to perform free oscillation* , a
situation as depicted in Figure 14 will then occur. This is the graphical representation of
the solution to equation 1. Figure 14 shows that the amplitude of oscillation decreases
exponentially with time due to the velocity dependent drag force. The strength of the
drag force is represented by the magnitude of b. A useful quantity when discussing
oscillating mass systems is the Q-value defined as:

Q=(W,m)b, Equation 2.

* For the ring as a whole this corresponds to each i initi i

. : ‘ I protem molecule initially bein.
dxsplaf;ed a dlstance So from its equilibrium, with adjacent molecules being displiced in
opposite directions and then being released to freely oscillate. '
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When the Q-value is large ( relatively small b ) , as it is for the oscillating mass system
depicted in Figure 14, then the average power (P4) radiated or dissipated by the
oscillating system per oscillation cycle is given approximately by:

P4 = E(W,/Q), Equation 3,

where E is the total energy of the oscillating system at the time of interest. For our
system almost all power is dissipated in the form of pressure waves in the fluid medium
in which the virus is maintained.

Now if the system in Figure 13C were to be exposed to a periodic driving force such
as sinusoidal pressure waves, then the differential equation of motion for the system
would be given by:

d2s/dt? + (b/m)dS/dt + W,2S = F, Sin Wt , Equation 4,

where I, is a constant and the maximum amplitude of the driving force (F, Sin Wt).
The steady state solution to equation 4 is:

: S=BCos(Wt-&) , Equation 3,
where & is a phase constant and B is given by :

B=F)(m2(Wo2- W2)2+ W2b2)1/2 | Equation 6.

Figure 15 shows B plotted against the angular frequency of the driving force for the
case where the mass and the peak value of the driving force are held constant while the
drag force is allowed to vary. Note the horizontal dashed line that intercepts the curve for
b=b,. Let the displacement value ( oscillation amplitude ) given where the dashed line
intercepts the displacement axis be the displacement value which corresponds to the
oscillator self distruction ( adjacent protein bonds rupture ). In this situation Figure 15
would then indicate that for the driving force used, the protein ring would be ruptured, if
b was much smaller then 3b,. Another way to say this is , if your oscillator has a very
small b value, then a very small driving force can destroy it provided the driving
frequency is close enough to the resonance frequency.

Still another approach to understanding the oscillator self distruction process is to
look at the power absorption by the oscillator from the driving force. Equation 7 gives
the power absorption (P,) of the oscillator from the driving force.

P, = (1/2FyW2b)/ (m2(W2-W,2)2 + W2b2),  Equation 7.

Pa is plotted verses angular frequency in Figure 16 for a constant value of maximum
driving force F, , constant mass (m), and three values of b. The curve in Figure 16 are
for a situation of dynamic equilibrium. That is power absorption from the driving force
equals power being dissipated by the oscillator. In our case almost all dissipation is done
by re-radiation of the pressure wave, which is driving the system. Let the dashed line
intercept indicate the re-radiation power level at which the oscillator's amplitude is at the
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Approximately half the re-radiated ultrasound is

emitted to the interior of the virus capsid. If the

interior re-radiated ultrasound has a frequency near

one of the main resonant structural vibration frequency,

it will be readily re-absorbed by the capsid. This has the
effect of effectively increasing the Q-value of the individual
oscillators in the protein rings, over that of the isolated ring.
The effect of all of this is that the curves in Figures 15 and 16
for actual viruses should be even sharper ( the same protein rings
in viruses are easier to destroy by structural resonant
vibrations ).
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self destruct point. Any further power absorption and the oscillator will not be able to
increase its amplitude of oscillation because it will come apart (rupture). Figure 16
illustrates that if your oscillator has a small enough b value, then a very small driving
force can destroy it, provided the driving frequency is close enough to the vesonance
frequency (W, ).

Let us now return our attention to viruses with helical symmetry. Close examination
of the two prototype helical viruses of Figures 1 and 2 shows that what we have in these
two viruses is a good analog to an elastic spring. And just like an elastic spring you will
have a natural specific torsional resonance frequency for each helical virus. For example
for a torsional spring oscillation, the equation of motion is given by:

(Dds2/dt2 = - CS, Equation 8

where I is the moment of inertia of the helical mass about its length axis, S is the angular
displacement from equilibrium ( zero torque ), and C is the torsional stiffness , a constant.
Equation 8 has a solution of:

W, = (C/I)l/ 2 , Equation 9.

If this frequency of ultrasound is applied to the helical structure with enough intensity the
helix will come apart. It should also be noted that relatively long ( large length to width
ratio ) helical viruses should also be susceptible to damage by ultrasound frequencies that
set up standing longitudinal wave motion along the virus axis. And particularly the
simultaneous application of ultrasound frequencies for both torsional and longitudinal
standing waves should be particularly destructive to the helical viruses. With the proper
" choice of frequencies and relative intensity between frequencies and absolute intensities
we should be able to convert helical viruses into organic trash in one second or so.
Before taking up bacterial susceptibility to structural resonant vibrations, let us
summarize what has been learned about destroying and or controlling virus infections
using structural resonant vibrations. Figure 17 illustrates the structure of the supposed
cause of AIDS, the HIV. HIV has three obvious periodic structures that can be attacked
by structural resonant vibrations. First, there are the periodically placed glycoprotein
spikes on the surface. Second, there is the deltahedra outer capsid. Third, there is the
inner capsid. Each of these structures is destructible by its own structural resonant
vibrations. Since the ultrasound intensity levels of structural resonant vibrations required
to destroy a virus are so ultra low ( 10-16 w/m2 ) , it is practical to keep a person infected
with a virus under continuous exposure to structural resonant vibrations for that virus.
This can be achieved in several ways: 1) The person can ware a small inconspicuous
ultrasound transducer unit ( see Appendix F ), 2) Rife frequency instrument type "light"
can be installed at home or in the work place, and 3) Structural resonant vibration
ultrasound can be carried by the room air. Now, if the body's immune system is actively
hunting for and destroying cells infected with the virus of interest ( this process can be
stimulated by a vaccine ) and if the virus is not being allowed to infect new cells do to its
destruction by structural resonant vibrations, then the body can potentially rid its self of
the virus completely.
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Now on to bacteria destruction by structural resonant vibrations. From the remnants
of Rife's work still publicly available, it is clear that Rife was able to destroy all bacteria
he encountered using his frequency instrument. In other words he could just as easily
destroy viruses as bacteria with his frequency instrument ( see Appendix B ). Itis
assumed in the first sentence of this paragraph that bacteria can be destroyed by structural
resonant vibration phenomenon, which are of the same nature as that for virus distruction.
I know of no direct observational proof of that. However, there is good circumstantial
evidence for it. Though the cell wall structure of bacteria in general appears to be a
continuous strong tough uniform material, a closer look at high power with electron
microscopes show that there are numerous pores, surface projections, such as pili, which
are transmembrane and transwall structures as are flagella. All of these structures have
periodic protein clump structures associated with there construction and or immediate
environment. For example, pili protein subunits( clumps ) are arranged in a regular
helical configuration. Which, if any of the above periodic protein clump structures can be
easily disrupted by structural resonant vibrations is not known at present. Someone or
some institution will need to construct a modernized version of a Rife microscope ( see
Appendix A ) and actually observe bacteria cell distruction by a Rife frequency
instrument device to determine where the weak spots are in the bacteria cell wall which
allow osmotic pressure to rupture the bacteria and spill its contents out.

You should now understand how Rife, using his frequency instrument, was able by
1939 to destroy the viral and bacterial pathogens associated with 52 major diseases,
including cancer ( see Appendix G for connection between BX and BY cancer viruses
and the genetics of cancer cells). Rife's results were fully and completely verified by the
1934, 1935, and 1937 test clinical trials, which were carried out by the U.S.C. Medical
School Special Medical Research Committee, that oversaw the clinical trials. The
responsibility for the deaths of, suffering by, and the financial ruin of tens upon tens of
millions of people since 1937 clearly rests with the cowardly, greedy, and corrupt
leadership/ownership of the medical industry. This includes pharmaceutical and
insurance companies which have been major benefactors and pervaors of the greed and
associated corruption. Rife treatment methods should be available everywhere right now!
Of coarse this would reduce patient suffering and so called health costs in the U.S. by
50% or more. Now who do you think will resist Rife treatment implementation? Who
do you think will attempt to and has had laws like the Weinberger law in California
passed so that you can only be treated for cancer by a allopathic medical doctor that only
can use: 1) Surgery, 2) Radiation, and or 3) Chemotherapy?

In China doctors are paid only when the people in their practice remain healthy or are
made well. We need to adopt a strong value given for value received attitude when
dealing with allopathic doctors. Of coarse we must insist that these doctors go back to
school and learn what health is and its relationship to good nutrition, mega-nutrition, diet,
exercise, and emotional health. We must also insist that cheap effective treatment
methods, drugs, and remedies, which have been suppressed for over 10, 20, 30, 40, 50
plus years now by vested monopolistic interests be made readily available at affordable
prices ( see Appendix H for examples of very effective suppressed cheap remedies ).

Taken from: DR.RIFE AND THE DEATH OF THE CANCER INDUSTRY,
a paper by physwlst Gary Wade 7/ 13/93
For info write: Gary Wade = A HerrrbTs
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